Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Canan Kazak, Turan K. Yazicilar and Veysel T. Yilmaz*

Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayis University, 55139 Kurupelit Samsun, Turkey

Correspondence e-mail: vtyilmaz@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.037$
$w R$ factor $=0.100$
Data-to-parameter ratio $=9.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

trans-Tetraaquabis(p-nitrobenzoxasulfamato)cobalt(II)

The structure of the title complex consists of neutral molecules of $\left[\mathrm{Co}(\mathrm{nbs})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$ (nbs is the p-nitrobenzoxasulfamate anion, $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}^{-}$). The Co^{2+} ion occupies an inversion centre and exhibits a distorted octahedral geometry, involving two monodentate nbs ($\mathrm{N}_{\text {imine }}$) anions and four water molecules. The crystal structure is stabilized by hydrogen bonding and weak aromatic $\pi-\pi$ stacking interactions between the benzene rings of nbs ligands, forming a three-dimensional network.

Comment

Sulfamate derivatives have considerable commercial importance as artificial sweeteners (Spillane et al., 1996; Drew et al., 1998) and drugs (Howarth et al., 1994; Maryanoff et al., 1998; Gautun et al., 1999) and have been used in the preparation of flame retarding (Lewin, 1997) and antistatic polymers (Spiridonov \& Malushko, 2000). Recently, we have started the synthesis and spectroscopic and crystallographic characterization of metal salts and complexes of a cyclic sulfamate, the p-nitrobenzoxasulfamate ion (nbs) $\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}^{-}\right)$. We have previously reported the X-ray crystal structures of the sodium (Yazicilar et al., 2002) and potassium (Bekdemir et al., 2002) salts of nbs, and the first aqua-metal complexes of nbs with copper(II), viz. $\left[\mathrm{Cu}(\mathrm{nbs})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ (Yilmaz, Andac et al., 2002), cadmium(II), $\left[\mathrm{Cd}(\mathrm{nbs})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$ and mercury(II), $\left[\mathrm{Hg}(\mathrm{nbs})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]$ (Yilmaz, Yazicilar et al., 2002). As a part of our research project, in this paper, we report the synthesis and crystal structure of the title compound, (I).

(I)

A molecular view of (I) is shown in Fig. 1 and Table 1 lists selected geometric data. The structure of (I) consists of neutral molecules of $\left[\mathrm{Co}(\mathrm{nbs})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$, in which the Co^{2+} ion occupies an inversion centre and is coordinated by a pair of anionic nbs ligands and four water molecules, exhibiting distorted octahedral geometry. The nbs ions acts as monodentate ligands through the imine N atom, occupying trans positions of the coordination polyhedron. Previous studies showed that the nbs ligand exhibits two types of coordination via the N or $\mathrm{O}_{\text {nitro }}$ sites. N -coordination was observed in the

Received 11 March 2004 Accepted 18 March 2004 Online 27 March 2004

Figure 1
Molecular view of (I) (40% probability displacement ellipsoids). The symmetry code is as in Table 1.

Figure 2
Packing diagram of (I), projected approximately on to ($\overline{1} 10$), showing hydrogen bonds as dashed lines (50% probability displacement ellipsoids).
case of copper(II) and cadmium(II), whereas nbs behaves as an ambidentate ligand in $\left[\mathrm{Hg}(\mathrm{nbs})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]$; one of the nbs ions is N -bonded, while the other one is O-coordinated. Slight distortion of the metal coordination from regular octahedral geometry is apparent, as seen in the $\mathrm{O}-\mathrm{Co}-\mathrm{O}$ angles (Table 1).

The nbs ligand ($\mathrm{C} 1-\mathrm{C} 6 / \mathrm{C} 21 / \mathrm{O} 3 / \mathrm{N} 1 / \mathrm{S} 1$) is essentially planar, with an r.m.s. deviation of $0.09 \AA$. The nitro group is almost coplanar with the nbs backbone, although one of the O atoms (O4) of the nitro group deviates from the mean plane of the nbs ligand by 0.20 (1) \AA. The packing of (I) is shown in Fig. 2. It exhibits parallel stacking of pairs of nbs ions, resulting in weak aromatic $\pi-\pi$ interactions $\left[C g \cdots C g^{\text {vii }}=3.828\right.$ (2) \AA; symmetry code: (vii) $2-x,-y, 1-z ; C g$ is the centroid of the ring]. The H atoms of one of the water molecules ($\mathrm{O} 1 W$) form intramolecular hydrogen bonds with the sulfonyl O atoms (O2). The individual molecules are connected by intermolecular hydrogen bonds (Table 2) between water H atoms and the O atoms of the nitro groups. These include a trifurcated interaction involving atom $\mathrm{H} 1 B$. The hydrogen bonds and weak $\pi-\pi$ interactions stabilize the crystal structure, thereby forming a three-dimensional network (Fig. 2).

Experimental

$\mathrm{Na}(\mathrm{nbs}) \cdot \mathrm{H}_{2} \mathrm{O}(0.51 \mathrm{~g}, 2.0 \mathrm{mmol})$ dissolved in a tetrahydrofuran/water mixture ($1: 1, v: v, 20 \mathrm{ml}$) was added to an aqueous solution $(10 \mathrm{ml})$ of $\mathrm{CoCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.24 \mathrm{~g}, 1.0 \mathrm{mmol})$ and the mixture stirred for 15 min at room temperature. The resulting solution was allowed to evaporate slowly for crystallization at room temperature and X-ray quality brown single crystals were obtained within a week.

Crystal data
$\left[\mathrm{Co}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \quad Z=1$
$M_{r}=561.32$
Triclinic, $P \overline{1}$
$a=7.2079$ (9) Å
$b=7.3251(10) \AA$
$c=10.4032(14) \AA$
$\alpha=88.760(11)^{\circ}$
$\beta=77.191$ (10) ${ }^{\circ}$
$\gamma=62.442$ (9) ${ }^{\circ}$
$V=472.75(11) \AA^{3}$

$$
\begin{aligned}
& Z=1 \\
& D_{x}=1.972 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation }
\end{aligned}
$$

Cell parameters from 11439
reflections
$\theta=2.0-25.2^{\circ}$
$\mu=1.22 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, brown
$0.5 \times 0.4 \times 0.1 \mathrm{~mm}$
Data collection
Stoe IPDS-II diffractometer ω scans
Absorption correction: by integra-
tion (X-RED; Stoe \& Cie, 2002)
$T_{\text {min }}=0.563, T_{\text {max }}=0.885$
5264 measured reflections
1647 independent reflections
Refinement
Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0729 P)^{2} \\
&+0.0979 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.93 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.67 \mathrm{e}^{-3}
\end{aligned}
$$

1571 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.064$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-8 \rightarrow 8$
$k=-8 \rightarrow 8$
$l=-12 \rightarrow 12$
$S=1.05$
1647 reflections
167 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{O} 1 W$	$2.0713(18)$	$\mathrm{Co} 1-\mathrm{N} 1$	$2.1653(16)$
$\mathrm{C} 1-\mathrm{O} 2 W$	$2.0951(16)$		
$\mathrm{O} 1 W-\mathrm{Co} 1-\mathrm{O} 2 W$	$92.89(8)$	$\mathrm{O} 1 W^{i}-\mathrm{Co} 1-\mathrm{N} 1$	$89.05(7)$
$\mathrm{O} 1 W^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 2 W$	$87.19(8)$	$\mathrm{O} 2 W-\mathrm{Co} 1-\mathrm{N} 1$	$91.55(7)$
$\mathrm{O} 1 W-\mathrm{Co} 1-\mathrm{N} 1$	$90.95(7)$	$\mathrm{O} 2 W^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{N} 1$	$88.45(7)$

Symmetry code: (i) $-x,-y,-z$.

Table 2
Hydrogen-bonding geometry $\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 A \cdots \mathrm{O} 5^{\mathrm{ii}}$	0.88 (3)	1.99 (3)	2.853 (2)	171 (4)
$\mathrm{O} 1 W-\mathrm{H} 1 B \cdots \mathrm{O} 2$	0.88 (5)	2.46 (4)	3.031 (2)	123 (3)
$\mathrm{O} 1 W-\mathrm{H} 1 B \cdots \mathrm{O} 1^{\text {iii }}$	0.88 (5)	2.59 (5)	3.141 (3)	121 (3)
$\mathrm{O} 1 W-\mathrm{H} 1 B \cdots \mathrm{O} 5^{\mathrm{iv}}$	0.88 (5)	2.50 (4)	3.020 (3)	118 (4)
$\mathrm{O} 2 W-\mathrm{H} 2 A \cdots \mathrm{O}^{\mathrm{v}}$	0.86 (3)	2.34 (3)	2.908 (2)	124 (3)
$\mathrm{O} 2 W-\mathrm{H} 2 A \cdots \mathrm{O} 2^{\text {iii }}$	0.86 (3)	2.31 (3)	3.109 (3)	156 (3)
$\mathrm{O} 2 W-\mathrm{H} 2 B \cdots \mathrm{O} 1^{\text {vi }}$	0.86 (3)	2.09 (3)	2.927 (3)	164 (4)

Symmetry codes: (ii) $1+x, y-1, z-1$; (iii) $1-x,-y,-z$; (iv) $-x,-y, 1-z$; (v) $1+x, y, z-1$; (vi) $-x, 1-y,-z$.

H atoms of the hydroxy group and water molecules were refined freely $[\mathrm{O}-\mathrm{H}=0.857(19)-0.88(5) \AA$, while H atoms bonded to C
atoms were included using a riding model, starting from calculated positions $\left[\mathrm{C}-\mathrm{H}=0.93 \AA\right.$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})\right]$.

Data collection: X - $A R E A$ (Stoe \& Cie, 2002); cell refinement: $X-A R E A$; data reduction: $X-R E D$ (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was financially supported by the Research Fund of Ondokuz Mayis University.

References

Bekdemir, Y., Kutuk, H., Celik, S., Yilmaz, V. T. \& Thoene, C. (2002). J. Mol. Struct. 604, 239-244.
Drew, M. G. B., Wilden, G. R. H., Spillane, W. J., Walsh, M. R., Ryder, C. A. \& Simmie, J. M. (1998). J. Agric. Food Chem. 46, 3016-3026.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gautun, H. S. H., Bergan, T. \& Carlsen, P. H. J. (1999). Acta Chem. Scand. 53, 446-452.
Howarth, N. M., Purohit, A., Reed, M. J. \& Potter, B. V. L. (1994). J. Med. Chem. 37, 219-221.
Lewin, M. (1997). J. Fire Sci. 15, 263-276.
Maryanoff, B. E., Costanzo, M. J., Nortey, S. O., Greco, M. N., Shank, R. P., Schupsky, J. J., Ortegon, M. P. \& Vaught, J. L. (1998). J. Med Chem. 41, 13151343.

Sheldrick, G. M. (1997). SHELXL97, University of Göttingen, Germany.
Spillane, W. J., Ryder, C. A., Walsh, M. R., Curran, P. J., Concagh, D. G. \& Wall, S. N. (1996). Food Chem. 56, 255-261.

Spiridonov, A. A. \& Malushko, S. B. (2000). Polym. Sci. B42, 122-123.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Yazicilar, T. K., Andac, O., Bekdemir, Y., Kutuk, H., Yilmaz, V. T. \& Harrison, W. T. A. (2002). Acta Cryst. (2002). C58, m21-m22.

Yilmaz, V. T., Andac, O., Yazicilar, T. K., Kutuk, H., Bekdemir, Y. \& Harrison, W. T. A. (2002). J. Mol. Struct. 608, 71-76.

Yilmaz, V. T., Yazicilar, T. K., Andac, O., Kutuk, H., Bekdemir, Y. \& Harrison, W. T. A. (2002). Z. Anorg. Allg. Chem. 628, 1908-1912.

